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Overview o
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Overview

@ Accepted: 1591 (20.56%)

= 454 oral presentation papers (20 minute)

= 1137 poster papers (2 minute)
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Invited Talk

@ Hinton, Bengio, and Lecun
@ Current challenges of deep learning
= Hinton - Invariance - Equivariance
= Bengio - Low-level > High level cognition
= Lecun - Labelling data costs a lot = Self-supervised learning




Invited Talk- Hinton

@ New version of Capsule Network?

@ Translational invariance and equivariance

Invariance Human Human m

Equivariance Human onthe Humanonthe Human on the
left middle right
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Invited Talk- Hinton

@ Typical Convolution Neural Network

= Max pooling leads to translation invariance
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= Max pooling leads to lose spatial hierarchy in the features.
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Invited Talk- Hinton

@ Capsule Network - equivariance

_ Typical CNN Capsule Network

Basic Unit Neuron(scalar) Capsule(vector)
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Invited Talk - Yann Lecun

@ Deep supervised learning works well for perception
= When labeled data is abundant

= Problem: Producing a dataset with clean labels is expensive
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Invited Talk - Yann Lecun

@ How do humans and animals learn?
= Observation

= Prediction

Babies learn how the world works by obse

» Largely by observation, with remarkably little i
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Invited Talk - Yann Lecun

@ How do humans and animals learn?

Early Conceptual Acquisition in Infants

Emmanuel Dupoux]
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Invited Talk - Yann Lecun o

@ Self-supervised learning
= Training data is autonomously labelled

= Ttis still supervised-learning

Supervised Semi- Unsupervised | Self-
Learning supervised Learning supervised
Learning Learning
Data Labelled data  Combination  Unlabelled Unlabelled
of labeled and  data data
unlabeled data
Type of Regression, Association, Prediction,
problems Classification Clustering Filling in the
blank
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Invited Talk - Yann Lecun o

@ Self-supervised learning example
= Unsupervised representation learning by prediction image rotations

= RotNet, 2018, ICLR
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Invited Talk - Yann Lecun

@ Self-supervised learning
= Future: It may be possible to predict paths of other agents
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Featured paper1- DEU o

@ Title: Differential Equation Units: Learning Functional Forms of
Activation Functions from Data

@ Problem: Functional form of the activation function is fixed
regardless of dataset

@ Contribution: It enables each neuron to learn a particular
nonlinear activation function.



Featured paper1- DEU

@ Main idea: Finding parameters of an ordinary differential
equation(ODE) for each neuron

@ Each neuron has own ODE O
- ay"(t)+by'(t)+cy(t) = u(t), whereu(t) = {0 ts0 oK

1t>0

input ager

~N

= a,b,c: scalars used to parameterize the ODE
= c¢1,c2: initial conditions of ODE’s solution
= u(t): Heaviside(unit) step function

@ a,b,c,c1,c2 parameters are treated like biases of the neuron and
trained
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Featured paper1- DEU

@ Main idea: ; ’
= Solution of ODE w.r.t (a,b,c,c1,c2) parameters ay"(t)+ by (t) +ey(t) = u(t),

0 <0

where u(t) = {1 S0
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Featured paper1- DEU

@ Result
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Featured paper1- DEU

@ Result

KAIST

3.5

3.09

Test Error
N
wn

Ll
=

1.54

1.0+

* - MAXOUT
‘ PRELU

RELU
=== SEI
=g DEU




Featured paper 2 - Fusion strategy il

@ Title: Infrared-Visible Cross-Modal Person Re-Identification with
an X Modality

@ Problem: Significant gap between the RGB and infrared images.

@ Contribution: Introducing an auxiliary X modality to reduce the
gap



Featured paper 2 - Fusion strategy

@ Result
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Featured paper 2 - Fusion strategy

@ Loss = CMG(Cross Modality Gap) + MRG(Modality Respective
Gap)

. OMG: Lo =85 4oLV D: Euclidean distance
cross cross y: target
1 I: Infrared
Lofows = qpLrx + Lxt)s x, X-modality
V: Visibility
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= MRG: similar to typical cross entropy loss
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Featured paper 2 - Fusion strategy

@ Result

Table 1: Comparison results (%) with the state-of-the-art IV-RelD methods on RegDB and SYSU-MMO1 datasets.

A h RegDB SYSU-MMO1
pproac =1 [r=10r=20 [ mAP | r=1 [ r=10 ] r=20 | mAP
One-stream (Wu et al. 2017) 13.11 | 3298 | 4251 | 14.02 || 12.04 | 49.68 | 66.74 | 13.67
Two-stream (Wu et al. 2017) 1243 | 30.36 | 4096 | 1342 || 11.65 | 47.99 | 65.50 | 12.85
Zero-Padding (Wu et al. 2017) 17.75 | 3421 | 4435 | 1890 | 14.80 | 54.12 | 71.33 | 1595
TONE (Ye et al. 2018a) 16.87 | 34.03 | 44.10 | 1492 || 12.52 | 50.72 | 68.60 | 14.42
HCML (Ye et al. 2018a) 24.44 | 4753 | 56.78 | 20.80 || 14.32 | 53.16 | 69.17 | 16.16
BDTR (Ye et al. 2018b) 33.47 | 5842 | 67.52 | 31.83 || 17.01 | 5543 | 71.96 | 19.66
D-HSME (Hao et al. 2019) 50.85 | 73.36 | 81.66 | 47.00 || 20.68 | 62.74 | 77.95 | 23.12
cmGAN (Dai et al. 2018) - = - = 2697 | 67.51 | 80.56 | 27.80
D?RL (Wang et al. 2019¢) 43.40 | 66.10 | 76.30 | 44.10 || 28.90 | 70.60 | 82.40 | 29.20
MSR (Feng, Lai, and Xie 2019) || 48.43 | 70.32 | 79.95 | 48.67 || 37.35 | 8340 | 93.34 | 38.11
AlignGAN (Wang et al. 2019a) || 57.90 - - 53.60 || 4240 | 85.00 | 93.70 | 40.70
Our method 62.21 | 83.13 | 91.72 | 60.18 || 49.92 | 89.79 | 95.96 | 50.73
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Thank you for your attention



