

KAIS.

Lab Seminar (2020.02.20)

WooJu Lee dnwn24@kaist.ac.kr

Torkamani, MohamadAli, et al. "Differential Equation Units: Learning Functional Forms of Activation Functions from Data." AAAI (2020)

Diangang Li et al. "Infrared-Visible Cross-Modal Person Re-Identification with an X Modality." AAAI (2020)

Outline

Overview

- Invited Talk
 - Bengio, Hinton, Lecun
- Featured paper
 - Differential Equation Units: Learning Functional Forms of Activation Functions from Data
 - Infrared-Visible Cross-Modal Person Re-Identification with an X Modality
- Conclusion

Overview

Abstracts submitted: 8843

Overview

Accepted: 1591 (20.56%)

- 454 oral presentation papers (20 minute)
- 1137 poster papers (2 minute)

Invited Talk

- Hinton, Bengio, and Lecun
- Current challenges of deep learning
 - Hinton Invariance → Equivariance
 - Bengio Low-level → High level cognition
 - Lecun Labelling data costs a lot → Self-supervised learning

Invited Talk- Hinton

- New version of Capsule Network?
- Translational invariance and equivariance

Invariance	Human	Human	Human
Equivariance	Human on the left	Human on the middle	Human on the right

Invited Talk- Hinton

Typical Convolution Neural Network

Max pooling leads to translation invariance

Max pooling leads to lose spatial hierarchy in the features.

Capsule Network – equivariance

	Typical CNN	Capsule Network
Basic Unit	Neuron(scalar)	Capsule(vector)

Deep supervised learning works well for perception

- When labeled data is abundant
- Problem: Producing a dataset with clean labels is expensive

How do humans and animals learn?

- Observation
- Prediction

Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.

Photos courtesy of Emmanuel Dupoux

Y. LeQu

How do humans and animals learn?

Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]

Self-supervised learning

- Training data is autonomously labelled
- It is still supervised-learning

	Supervised Learning	Semi- supervised Learning	Unsupervised Learning	Self- supervised Learning
Data	Labelled data	Combination of labeled and unlabeled data	Unlabelled data	Unlabelled data
Type of problems	Regression, Classification		Association, Clustering	Prediction, Filling in the blank

Self-supervised learning example

- Unsupervised representation learning by prediction image rotations
- RotNet, 2018, ICLR

Self-supervised learning

Future: It may be possible to predict paths of other agents

- Title: Differential Equation Units: Learning Functional Forms of Activation Functions from Data
- Problem: Functional form of the activation function is fixed regardless of dataset
- Contribution: It enables each neuron to learn a particular nonlinear activation function.

Featured paper 1 - DEU

- Main idea: Finding parameters of an ordinary differential equation(ODE) for each neuron
- Each neuron has own ODE

KAIS

→ ay''(t)+by'(t)+cy(t) = u(t), where u(t) = $\begin{cases} 0 & t \le 0 \\ 1 & t > 0 \end{cases}$

- a,b,c: scalars used to parameterize the ODE
- c1,c2: initial conditions of ODE's solution
- u(t): Heaviside(unit) step function
- a,b,c,c1,c2 parameters are treated like biases of the neuron and trained

Featured paper 1 - DEU

Main idea:

- Solution of ODE w.r.t (a,b,c,c1,c2) parameters
- $$\label{eq:asymptotic} \begin{split} ay''(t) + by'(t) + cy(t) &= u(t),\\ \text{where } u(t) &= \begin{cases} 0 & x \leq 0\\ 1 & x > 0 \end{cases} \end{split}$$

Subspace	Solution
$a = 0, b = 0, c \neq 0$	$\sigma(t)/c$ (i.e., sigmoid when $c = 1$)
$a = 0, b \neq 0, c = 0$	$xu(x)/b + c_1$ (i.e., ReLU when $b = 1$ and $c_1 = 0$)
$a=0, b\neq 0, c\neq 0$	$c_1 e^{-(cx)/b} - u(x) e^{-(cx)/b}/c + u(x)/c$
$a\neq 0, b=0, c=0$	$\frac{x^2 u(x)}{2a} + c_2 x + c_1$
a < 0, b = 0, c < 0 or a > 0, b = 0, c > 0	$c_2 \sin(\sqrt{\frac{c}{a}}x) + c_1 \cos(\sqrt{\frac{c}{a}}x) - \frac{u(x)}{c} \left(\cos(\sqrt{\frac{c}{a}}x) - 1\right)$
a > 0, b = 0, c > 0 a < 0, b = 0, c > 0 or	$\sqrt{\frac{e_{\pi}}{2}} = \sqrt{\frac{e_{\pi}}{2}} = \frac{$
a > 0, b = 0, c < 0	$c_1 e^{\sqrt{-\frac{2}{a}x}} + c_2 e^{-\sqrt{-\frac{2}{a}x}} + \frac{u(x)e^{-\sqrt{-\frac{2}{a}x}}}{2c} + \frac{u(x)e^{-\sqrt{-\frac{2}{a}x}}}{2c} - \frac{u(x)}{c}$
$a \neq 0, b \neq 0, c = 0$	$\frac{u(x)a}{k^2}e^{-\frac{bx}{a}} - \frac{u(x)a}{k^2} - c_1\frac{a}{k}e^{-\frac{bx}{a}} + \frac{u(x)x}{k} + c_2$

Featured paper 1 - DEU

Result

Result

- Title: Infrared-Visible Cross-Modal Person Re-Identification with an X Modality
- Problem: Significant gap between the RGB and infrared images.
- Contribution: Introducing an auxiliary X modality to reduce the gap

Result

• Loss = CMG(Cross Modality Gap) + MRG(Modality Respective Gap)

• CMG:
$$\mathcal{L}_{C} = \mathcal{L}_{cross}^{\mathbf{I},\mathbf{X}} + \mathcal{L}_{cross}^{\mathbf{I},\mathbf{V}}, \qquad D: Euclidean distance y: target I: Infrared X: X-modality V: Visibility \mathcal{L}_{\mathbf{I}-\mathbf{X}} = \sum_{i=1}^{M} (\mathcal{L}_{\mathbf{I}-\mathbf{X}} + \mathcal{L}_{\mathbf{X}-\mathbf{I}}), \qquad \mathbf{L}_{\mathbf{X}-\mathbf{I}} = \sum_{i=M+1}^{2M} [\alpha_{1} + \max_{\substack{j=1,...,M \\ y_{i}=y_{j}}} D(f(\mathbf{X}_{i}), f(\mathbf{X}_{j})) \\ \mathcal{L}_{\mathbf{I}-\mathbf{X}} = \sum_{i=M+1}^{M} [\alpha_{1} + \max_{\substack{j=1,...,M \\ y_{i}=y_{j}}} D(f(\mathbf{I}_{i}), f(\mathbf{X}_{j}))] \\ - \max_{\substack{k=M+1,...,2M \\ i\neq k}} D(f(\mathbf{I}_{i}), f(\mathbf{X}_{k}))]_{+}, \qquad - \min_{\substack{k=1,...,M \\ y_{i}=y_{j}}} D(f(\mathbf{X}_{i}), f(\mathbf{I}_{k}))]_{+}.$$

MRG: similar to typical cross entropy loss

1

Result

				~			
RegDB			SYSU-MM01				
<i>r</i> = 1	<i>r</i> = 10	r = 20	mAP	r = 1	r = 10	r = 20	mAP
13.11	32.98	42.51	14.02	12.04	49.68	66.74	13.67
12.43	30.36	40.96	13.42	11.65	47.99	65.50	12.85
17.75	34.21	44.35	18.90	14.80	54.12	71.33	15.95
16.87	34.03	44.10	14.92	12.52	50.72	68.60	14.42
24.44	47.53	56.78	20.80	14.32	53.16	69.17	16.16
33.47	58.42	67.52	31.83	17.01	55.43	71.96	19.66
50.85	73.36	81.66	47.00	20.68	62.74	77.95	23.12
E E	÷.	3	E I	26.97	67.51	80.56	27.80
43.40	66.10	76.30	44.10	28.90	70.60	82.40	29.20
48.43	70.32	79.95	48.67	37.35	83.40	93.34	38.11
57.90	-	-	53.60	42.40	85.00	93.70	40.70
62.21	83.13	91.72	60.18	49.92	89.79	95.96	50.73
	r=1 13.11 12.43 17.75 16.87 24.44 33.47 50.85 - 43.40 48.43 57.90 62.21	$\begin{tabular}{ c c c c c c c } \hline Reg \\ \hline r=1 & r=10 \\ \hline 13.11 & 32.98 \\ 12.43 & 30.36 \\ 17.75 & 34.21 \\ 16.87 & 34.03 \\ 24.44 & 47.53 \\ 33.47 & 58.42 \\ 50.85 & 73.36 \\ \hline -3.56 & -5.56 \\ \hline $	$\begin{tabular}{ c c c c c c c } \hline RegDB \\ \hline r=1 & r=10 & r=20 \\ \hline 13.11 & 32.98 & 42.51 \\ 12.43 & 30.36 & 40.96 \\ 17.75 & 34.21 & 44.35 \\ 16.87 & 34.03 & 44.10 \\ 24.44 & 47.53 & 56.78 \\ 33.47 & 58.42 & 67.52 \\ 50.85 & 73.36 & 81.66 \\ \hline - & - & - & - \\ 43.40 & 66.10 & 76.30 \\ 48.43 & 70.32 & 79.95 \\ 57.90 & - & - \\ \hline 62.21 & 83.13 & 91.72 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 1: Comparison results (%) with the state-of-the-art IV-ReID methods on RegDB and SYSU-MM01 datasets.

Thank you for your attention

