

ICCV 2019 (International Conference on Computer Vision)

Lab Seminar (2019.11.12)

발표자 : 이승희

Toyota Smarthome: Real-World Activities of Daily Living

ΤΟΥΟΤΑ

TOYOTA MOTOR EUROPE

TOYOTA SMARTHOME: REAL WORLD ACTIVITIES OF DAILY LIVING

Ínría_

KVI2.

Table 1. Comparative study highlighting the challenges in real-world setting datasets

Dataset	Context	Duration	Cross-view	Composite	View Type	Spontaneous	Camera	Fine-grained	Туре
		variation	challenge	activities		acting	framing	activities	
ACTEV/VIRAT [7]	free	Medium	Yes	No	Monitoring	Medium	Low	No	Surveillance
SVW [32]	biased	Low	No	No	Shooting	High	High	No	Sport
HMDB [21]	biased	Low	No	No	Shooting	Medium	High	No	Youtube
Kinetics [4]	biased	Low	No	No	Shooting	Medium	High	No	Youtube
AVA [15]	biased	Low	No	No	Shooting	Medium	High	No	Movies
EPIC-KITCHENS [6]	free	High	No	Yes	Egocentric	Medium	High	Yes	Kitchen
Something-Something [14]	free	Low	No	No	Shooting	Low	High	Yes	Object interaction
MPII Cooking2 [31]	free	High	Yes	Yes	Monitoring	Medium	Medium	Yes	Cooking
DAHLIA [42]	free	High	Yes	No	Monitoring	Medium	Medium	No	Kitchen
NUCLA [46]	free	Low	Yes	No	Shooting	Low	High	No	Object interaction
NTU RGB+D [33]	free	Low	Yes	No	Monitoring	Low	High	No	ADL
Charades [35]	free	Low	Yes	Yes	Shooting	Low	High	Yes	ADL
Smarthome	free	High	Yes	Yes	Monitoring	High	Low	Yes	ADL

Figure 2. Number of video clips per activity in Smarthome and the relative distribution across the different camera views. C1 to C7 represent 7 camera views. All the activity classes have multiple camera views, ranging from 2 to 7.

https://project.inria.fr/toyotasmarthome/

Das, S., Dai, R., Koperski, M., Minciullo, L., Garattoni, L., Bremond, F., & Francesca, G. Toyota Smarthome: Real-World Activities of Daily Living.

Drive&Act: A Multi-Modal Dataset for Fine-Grained Driver Behavior Recognition in Autonomous Vehicles

Figure 1: Overview of the Drive&Act dataset for driver behavior recognition. The dataset includes 3D skeletons in addition to frame-wise hierarchical labels of 9.6 Million frames captured by 6 different views and 3 modalities (RGB, IR and depth).

- <u>www.driveandact.com</u>
- 83 manually annotated hierarchical activity labels:
 - Level 1: Long running tasks (12)
 - Level 2: Semantic actions (34)
 - Level 3: Object Interaction tripplets [action|object|location] (6|17|14)

Martin, M., Roitberg, A., Haurilet, M., Horne, M., Reiß, S., Voit, M., & Stiefelhagen, R. Drive&Act: A Multi-modal Dataset for Fine-grained Driver Behavior Recognition in Autonomous Vehicles.

- 12h video data in 29 long sequences (9.6 M frames)
- Calibrated multi view camera system with 5 views
- Multi modal videos: NIR, Depth and Color data
- Markerless motion capture: 3D Body Pose and Head Pose
- Model of the static interior of the car

Depth

Figure 2: Example images of the working on laptop activity

Drive&Act: A Multi-Modal Dataset for Fine-Grained Driver **Behavior Recognition in Autonomous Vehicles**

	SoA conven. AR	Multi-mod. AR			Driver Ac	tivity Recognition	on Datsets		
	Kinetics [7]	NTU [43]	HEH [36]	Ohn et al. [35]	Brain4Cars [19]	D.PNight [50]	D.PReal [50]	AUC-D.D. [2]	Drive&Act
Year	2017	2016	2014	2014	2015	2016	2016	2017/18	2019
Publicly available	√	√	1	-	√	-	-	√	1
Manual driving	-	-	<	√	√	√	<	√	1
Autonomous driving	-	-	-	-	-	-	-	-	< ✓
RGB/Grayscale	√	<	<	√	√	√	<	√	< ✓
Depth	-	1	1	N/A ^b	-	-	-	-	1
NIR	-	1	-	-	-	√	-	-	1
Skeleton	-	1	-	-	-	-	-	-	1
Video	√	<	<	N/A ^b	√	√	<	N/A ^b	 ✓
Nº images	>76M	4M	N/A ^b	11K	2M	29K	18K	17K	> 9.6M
Nº synch. views	1	3	1	2	2	1	1	1	6
Resolution	N/A ^c	1920×1080 ^a	680×480	N/A ^b	1920×1088	640×480	640×480	1920×1080	1280×1024 ^d
Nº subjects	N/A ^b	40	8	4	10	20	5	31	15
Female / male	N/A ^b	N/A ^b	1/7	1/3	N/A ^b	10/10	N/A ^b	9/22	4/11
Nº Classes	400	60	19	3	5	4	4	10	83
Multi-level annot.	-	-	-	-	-	-	-	-	1
Nº Levels	1	1	1	1	1	1	1	1	3
Continuous labels	-	-	-	N/A ^b	-	1	√	N/A ^b	1
Object annot.	1	-	-	-	-	-	-	-	 Image: A second s

RGB resolution, IR/Depth resolution is 512×424 ^c variable resolution

information not provided by the authors d NIR-camera resolution

Table 1: Comparison of driving and non-driving related datasets for action recognition. In this table, we depict the characteristics of the recording modalities, the content of the dataset and the properties of the provided reference labels.

Figure 2: Interior of the simulator depicting the modified dashboard and camera positions.

Figure 4: Distribution of the scenarios/tasks in our dataset. *these tasks consist of both finding information about a previously asked question by reading a newspaper/magazine and of writing the answer into a notebook.

Figure 3: The interior model of the car. Green denotes storage areas, blue denotes car controls and gray remaining regions. Camera positions are depicted as coordinate systems.

Figure 3: Sample frequency of fine-grained activities (left) and atomic actions (right) by class (logarithmic scale). A sample corresponds to a 3s snippet with the assigned label. Colors denote the activity group (e.g. food-related activities).

Martin, M., Roitberg, A., Haurilet, M., Horne, M., Reiß, S., Voit, M., & Stiefelhagen, R. Drive&Act: A Multi-modal Dataset for Fine-grained Driver Behavior Recognition in Autonomous Vehicles.

End-to-End Learning of Representations for Asynchronous Event-Based Data

1			
н			
н			
- 54	_	_	2

Representation	Dimensions	Description	Characteristics
Event frame [53]	$H \times W$	Image of event polarities	Discards temporal and polarity
Event count image [36, 69]	$2 \times H \times W$	Image of event counts	Discards time stamps
Surface of Active Events (SAE) [7,69]	$2 \times H \times W$	Image of most recent time stamp	Discards earlier time stamps
Voxel grid [70]	$B \times H \times W$	Voxel grid summing event polarities	Discards event polarity
Histogram of Time Surfaces (HATS) [59]	$2 \times H \times W$	Histogram of average time surfaces	Discards temporal information
Event Spike Tensor (EST, our work)	$2\times B\times H\times W$	Sample event point-set into a grid	Discards the least amount of in

s event polarity Figure 2. An overview of our proposed framework. Each event is associated with a measurement (green) which is convolved with a (possibly learnt) kernel. This convolved signal is then sampled on

k(x,y,t)

Table 1. Comparison of grid-based event representations used in prior work on event-based deep learning. H and W dent height and width dimensions, respectively, and B the number of temporal bins.

https://github.com/uzh-rpg/rpg_event_representation_learning

SAMSUNG

What is an Event Camera

Events

Convolution

Exploit the high dynamic ran

d-to-End Learning of Representatio for Asynchronous Event-Based Dat

Measurements

Discretization

Gehrig, D., Loquercio, A., Derpanis, K. G., & Scaramuzza, D. (2019). End-to-End Learning of Representations for Asynchronous Event-Based Data. *arXiv preprint arXiv:1904.08245*.

Exploring Randomly Wired Neural Networks for Image Recognition

- What we call deep learning today descends from the connectionist approach to cognitive science.
- However, like the wiring patterns in ResNet, DenseNet, the NAS network generator is hand designed and the space of allowed wiring patterns is constrained in a small subset of all possible graphs.
- What happens if we loosen this constraint and design novel <u>network generators?</u>
 - Design a Network Generator not an Individual Network! (main topic)
 - Relation to Neuroscience
 - Turing analogized the unorganized machines to an infant human's cortex.
 - "At birth, the construction of the most important networks is largely random."

Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring randomly wired neural networks for image recognition. *arXiv preprint arXiv:1904.01569*.

Exploring Randomly Wired Neural Networks for Image Recognition

By using three Random graph model (ER, BA, WS), randomly wired neural networks are generated.

network	top-1 acc.	top-5 acc.	FLOPs (M)	params (M)
MobileNet [15]	70.6	89.5	569	4.2
MobileNet v2 [40]	74.7	-	585	6.9
ShuffleNet [54]	73.7	91.5	524	5.4
ShuffleNet v2 [30]	74.9	92.2	591	7.4
NASNet-A [56]	74.0	91.6	564	5.3
NASNet-B [56]	72.8	91.3	488	5.3
NASNet-C [56]	72.5	91.0	558	4.9
Amoeba-A [34]	74.5	92.0	555	5.1
Amoeba-B [34]	74.0	91.5	555	5.3
Amoeba-C [34]	75.7	92.4	570	6.4
PNAS [26]	74.2	91.9	588	5.1
DARTS [27]	73.1	91.0	595	4.9
RandWire-WS	74.7 _{±0.25}	92.2 _{±0.15}	583 ± 6.2	5.6 ± 0.1

Table 2. **ImageNet: small computation regime** (*i.e.*, <600M FLOPs). RandWire results are the mean accuracy (\pm std) of 5 random network instances, with WS(4, 0.75). Here we train for 250 epochs similar to [56, 34, 26, 27], for fair comparisons.

network	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
ResNet-50 [11]	77.1	93.5	4.1	25.6
ResNeXt-50 [52]	78.4	94.0	4.2	25.0
$\textbf{RandWire-WS}, C{=}109$	$\textbf{79.0}_{\pm 0.17}$	$\textbf{94.4}_{\pm 0.11}$	$4.0_{\pm 0.09}$	$31.9_{\pm 0.66}$
ResNet-101 [11]	78.8	94.4	7.8	44.6
ResNeXt-101 [52]	79.5	94.6	8.0	44.2
RandWire-WS, C=154	$80.1_{\pm 0.19}$	$94.8_{\pm 0.18}$	$7.9_{\pm 0.18}$	$61.5_{\pm 1.32}$

Table 3. **ImageNet: regular computation regime** with FLOPs comparable to ResNet-50 (top) and to ResNet-101 (bottom). ResNeXt is the 32×4 version [52]. RandWire is WS(4, 0.75).

network	test size	epochs	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
NASNet-A [56]	331^{2}	>250	82.7	96.2	23.8	88.9
Amoeba-B [34]	331^{2}	>250	82.3	96.1	22.3	84.0
Amoeba-A [34]	331^{2}	>250	82.8	96.1	23.1	86.7
PNASNet-5 [26]	331^{2}	>250	82.9	96.2	25.0	86.1
RandWire-WS	320^{2}	100	$81.6_{\pm 0.13}$	$95.6_{\pm 0.07}$	$16.0_{\pm 0.36}$	$61.5_{\pm 1.32}$

Table 4. **ImageNet: large computation regime**. Our networks are the same as in Table 3 (C=154), but we evaluate on 320×320 images instead of 224×224 . Ours are only trained for 100 epochs.

Exploring new generator designs may yield new, powerful networks designs.

Figure 1. **Randomly wired neural networks** generated by the classical Watts-Strogatz (WS) [50] model: these three instances of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0% classification accuracy on ImageNet under a similar computational budget to ResNet-50, which has 77.1% accuracy.

Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring randomly wired neural networks for image recognition. *arXiv preprint arXiv:1904.01569*.

Appendix

• 7,500 attendees (more than 3,000 attendees from Korea) https://github.com/hoya012/ICCV-2019-Paper-Statistics

Thank you ③

