

IROS 2019 and Trends of Deep Learning on Robotics

2019.11.27. 임형태 shapelim@kaist.ac.kr

Introduction: Limitation of End-to-end Approaches of Pose Regression

On KITTI Odometry Benchmark Suite

	Method	Setting	Code	<u>Translation</u>	Rotation	Runtime	Environment	Compare	
1	F-SLAM			0.00 %	0.0000 [deg/m]	0.01 s	1 core @ 2.5 Ghz (C/C++)		
2	V-LOAM	:::		0.55 %	0.0013 [deg/m]	0.1 s	2 cores @ 2.5 Ghz (C/C++)		
J. Zha	ng and S. Singh: <u>Visual-lidar Odo</u>	metry and Mapp	oing: Low	drift, Robust, and	Fast. IEEE International C	onference on Robo	otics and Automation(ICRA) 2015.		
3	LOAM	:::		0.57 %	0.0013 [deg/m]	0.1 s	2 cores @ 2.5 Ghz (C/C++)		
J. Zha	ng and S. Singh: LOAM: Lidar Od	ometry and Map	ping in Re	al- time. Robotics	Science and Systems Cor	ference (RSS) 201-	4.	-	
4	IMLS-SLAM++	:::		0.61 %	0.0014 [deg/m]	1.3 s	1 core @ >3.5 Ghz (C/C++)		
5	SOFT2	ďď		0.65 %	0.0014 [deg/m]	0.1 s	2 cores @ 2.5 Ghz (C/C++)		
I. Cviš	ić, J. Ćesić, I. Marković and I. Pe	trović: SOFT-SL	AM: Comp	utationally Efficie	nt Stereo Visual SLAM for a	Autonomous UAVs.	Journal of Field Robotics 2017.	-	
6	IMLS-SLAM	***		0.69 %	0.0018 [deg/m]	1.25 s	1 core @ >3.5 Ghz (C/C++)		
J. Des	chaud: IMLS-SLAM: Scan-to-Mode	A Matching Base	d on 3D D	ata. 2018 IEEE Inte	ernational Conference on	Robotics and Autor	mation (ICRA) 2018.	-	
7	MC2SLAM	***		0.69 %	0.0016 [deg/m]	0.1 s	4 cores @ 2.5 Ghz (C/C++)		
F. Neu	haus, T. Koss, R. Kohnen and D. F	Paulus: MC2SLAA	A: Real-Ti	me Inertial Lidar O	dometry using Two-Scan A	Notion Compensati	ion. German Conference on Pattern Recognition 2018.		

124	<u>DeepVO</u>	24.55 %	0.0489 [deg/m]	1 s	1 core @ 2.5 Ghz (Python)	

-0-

Wang et al., "DeepVO: Towards End to End Visual Odometry with Deep Recurrent Convolutional Neural Networks.," Proc of the IEEE ICRA, 2017

Wang et al., "End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks.," The International Journal of Robotics Research, 2017

Introduction: Limitation of End-to-end Approaches of Pose Regression

Brown: Trajectories of train data Green : Trajectories of test data

Trends of Deep Learning

[Picture from A.Saffiotti.]

-0-

R2D2: Repeatable and Reliable Detector and Descriptor

Motivation

- Structure-based methods perform well and the critical part is feature extraction and matching
- A robust feature detector enables robust visual localization
- ...and improves many other applications such as object detection, VSLAM and SfM

R2D2: Repeatable and Reliable Detector and Descriptor

• Classical methods: Detect-then-describe

1) Start with input image

2) Detect keypoints

3) Describe keypoints

• Their approach: Detect-and-describe

https://deview.kr/data/deview/2019/presentation/[133]Deview2019_Martin_Humenberger_small.pdf

R2D2: Repeatable and Reliable Detector and Descriptor

Repeatability

- Image locations that are invariant to usual image transformations (기하학적, 시각적 변화에도 같은 위치에서 keypoints 가 검출되는 정도)
- Reliability
 - Image locations that are good (discriminative and robust) for matching purpose (ユfeature descriptor와주위 영역과구분이되는 정도)

R2D2: Repeatable and Reliable Detector and Descriptor

Results

Image with top-scored keypoints repeatability map reliability map

https://deview.kr/data/deview/2019/presentation/[133]Deview2019_Martin_Humenberger_small.pdf

R2D2: Repeatable and Reliable Detector and Descriptor

Results

SuMa++: Efficient LiDAR-based Semantic SLAM

Previous work

 Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments.

T. Whelan *et al.*, "ElasticFusion: Dense SLAM Without A Pose Graph". *In Proc. of Robotics: Science and Systems*, 2015.

Behley, Jens, and Cyrill Stachniss. "Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments." Robotics: Science and Systems. 2018.

Object Space

9

SuMa++: Efficient LiDAR-based Semantic SLAM

Previous work

 Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments.

T. Whelan *et al.*, "ElasticFusion: Dense SLAM Without A Pose Graph". *In Proc. of Robotics: Science and Systems*, 2015.

Behley, Jens, and Cyrill Stachniss. "Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments." Robotics: Science and Systems. 2018.

Object Space

SuMa++: Efficient LiDAR-based Semantic SLAM

Previous work

 Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments.

 $\begin{array}{l} \mathcal{P} \text{ Point cloud} \\ \mathcal{V}_{\mathcal{D}} \text{ Vertex map} \\ \mathcal{N}_{\mathcal{D}} \text{ Normal map} \end{array} \right. Active: \text{ the area of the model most recently observed} \\ Inactive: \text{ Older parts of the map which have not been observed in a period of time } \delta_{\mathrm{t}} \end{array}$

T. Whelan *et al.*, "ElasticFusion: Dense SLAM Without A Pose Graph". *In Proc. of Robotics: Science and Systems*, 2015. Pfister, Hanspeter, et al. "Surfels: Surface elements as rendering primitives." Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 2000.

Behley, Jens, and Cyrill Stachniss. "Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments." Robotics: Science and Systems. 2018.

Object Space

SuMa++: Efficient LiDAR-based Semantic SLAM

Previous work

 Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments.
 *Surfel: Surface element

 $V_D N_D$ -Odometry Map Update $\Gamma w c$ active Preprocessing Surfel Map T_{WC} Pose graph $\mathcal{M}_{inactive}$ optimization Loop Closure Loop Closure Verification Detection Point cloud Active: the area of the model most recently observed $\mathcal{V}_\mathcal{D}$ Vertex map *Inactive*: Older parts of the map which have not been observed in a period of time δ_t $\mathcal{N}_{\mathcal{D}}$ Normal map T. Whelan et al., "ElasticFusion: Dense SLAM Without A Pose Graph". In Proc. of Robotics: Science and Systems, 2015.

Pfister, Hanspeter, et al. "Surfels: Surface elements as rendering primitives." Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 2000.

Behley, Jens, and Cyrill Stachniss. "Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments." Robotics: Science and Systems. 2018.

SuMa++: Efficient LiDAR-based Semantic SLAM

naad parking sidewalk other-ground building fen

KAIST

-0-

SuMa++: Efficient LiDAR-based Semantic SLAM

- Semantic segmentation using RangeNet++
 - Multi-class Floodfill
 - Semantic ICP
 - Dynamic detection and removal
 - Compare the new observation S_D and the world model S_M

I. Multi-class Floodfill

- ① Use an erosion to remove boundary labels and small areas of wrong labels resulting in S^{eroded}_{raw}
- ② Fill-in eroded labels w/ neighboring labels to get a more consistent result S_D

- 2. Filtering Dynamics using Semantics
 - Stable log odds term, $l_s^{(t)}$

SuMa

$$\begin{aligned}
l_{s}^{(t)} &= l_{s}^{(t-1)} + \text{odds} \left(p_{\text{stable}} \cdot \exp\left(-\frac{\alpha^{2}}{\sigma_{\alpha}^{2}}\right) \exp\left(-\frac{d^{2}}{\sigma_{d}^{2}}\right) \right) \\
&- \text{odds}(p_{\text{prior}}), \quad (4)
\end{aligned}$$

$$\begin{aligned}
l_{s}^{(t)} &= l_{s}^{(t-1)} \\
\text{SuMa++} &+ \text{odds} \left(p_{\text{stable}} \exp\left(-\frac{\alpha^{2}}{\sigma_{\alpha}^{2}}\right) \exp\left(-\frac{d^{2}}{\sigma_{d}^{2}}\right) \right) \\
&- \text{odds}(p_{\text{prior}}) - \text{odds}(p_{\text{penalty}}),
\end{aligned}$$

 α : The angle between surfel's normal n_s and normal of the measurement d: distance of the measurement in respect to the associated surfel

- 2. Filtering Dynamics using Semantics
 - Stable log odds term, $l_s^{(t)}$

 α : The angle between surfel's normal n_s and normal of the measurement d: distance of the measurement in respect to the associated surfel

KAIST

(b) SuMa++

(c) SuMa_nomovable

• 3. Semantic ICP

Point-to-plane error term $E(\mathcal{V}_D, \mathcal{V}_M, \mathcal{N}_M) = \sum_{\mathbf{u} \in \mathcal{V}_D} \underbrace{\mathbf{n}_u^\top \cdot \left(\mathbf{T}_{C_{t-1}C_t}^{(k)}\mathbf{u} - \mathbf{v}_u\right)^2}_{r_{\mathbf{u}}}$

where each vertex $\mathbf{u} \in \mathcal{V}_D$ is projectively associated to a reference vertex $\mathbf{v}_u \in \mathcal{V}_M$ and its normal $\mathbf{n}_u \in \mathcal{N}_M$ via

$$\mathbf{v}_{u} = \mathcal{V}_{M} \left(\Pi \left(\mathbf{T}_{C_{t-1}C_{t}}^{(k)} \mathbf{u} \right) \right), \tag{6}$$

$$\mathbf{n}_{u} = \mathcal{N}_{M} \left(\Pi \left(\mathbf{T}_{C_{t-1}C_{t}}^{(k)} \mathbf{u} \right) \right).$$
(7)

SuMa++: Efficient LiDAR-based Semantic SLAM

$$E(\mathcal{V}_{D}, \mathcal{V}_{M}, \mathcal{N}_{M}) = \sum_{\mathbf{u} \in \mathcal{V}_{D}} \mathbf{w}_{\mathbf{u}} \mathbf{n}_{\mathbf{u}}^{\top} \left(\mathbf{T}_{C_{t-1}C_{t}}^{(k)} \mathbf{u} - \mathbf{v}_{\mathbf{u}} \right)^{2},$$

Within ICP, we compute the weight $\mathbf{w}_{\mathbf{u}}^{(k)}$ for the residual $\mathbf{r}_{\mathbf{u}}^{(k)}$ in iteration k as follows:
$$\mathbf{w}_{\mathbf{u}}^{(k)} = \rho_{\text{Huber}} \left(\mathbf{r}_{\mathbf{u}}^{(k)} \right) C_{\text{semantic}} (\mathcal{S}_{D}(\mathbf{u}), \mathcal{S}_{M}(\mathbf{u}))$$
$$\mathbf{I} \left\{ l_{s}^{(k)} \geq l_{stable} \right\} \qquad (6)$$

where $\rho_{\text{Huber}}(r)$ corresponds to the Huber norm, given by:
$$\rho_{\text{Huber}}(r) = \left\{ \begin{array}{c} 1 & , \text{ if } |r| < \delta \\ \delta |r|^{-1} & , \text{ otherwise.} \end{array} \right\} \qquad (7)$$

For semantic compatibility $C_{\text{semantic}} \left((y_{\mathbf{u}}, P_{\mathbf{u}}), (y_{v_{\mathbf{u}}}, P_{v_{\mathbf{u}}}) \right),$
the term is defined as:
$$C_{\text{semantic}}(\cdot, \cdot) = \left\{ \begin{array}{c} P(y_{\mathbf{u}} | \mathbf{u}) & , \text{ if } y_{\mathbf{u}} = y_{v_{\mathbf{u}}} \\ 1 - P(y_{\mathbf{u}} | \mathbf{u}) & , \text{ otherwise.} \end{array} \right\}, \qquad (8)$$

DeepPCO: End-to-End Point Cloud through Deep Parallel Neural Network

DeepPCO: End-to-End Point Cloud through Deep Parallel Neural Network

Parallel Neural Network shows more better performance than other Deep Learning-based approaches

FlowNet Orientation Sub-Network

KAIS

TABLE I: Test results on KITTI sequences: t_{rel} is averaged translation RMSE between prediction and ground truth, and r_{rel} is averaged orientation RMSE between prediction and ground truth. The measurement units are textbfm).

	Seque	nce 04	Sequence 10		
Model	t_rel	r_rel	t_rel	r_rel	
Two-stream [16]	0.0554	0.0830	0.0870	0.1592	
ResNet18 [10]	0.1094	0.0602	0.1443	0.1327	
DeepVO [20]	0.2157	0.0709	0.2153	0.3311	
PointNet [17]	0.0946	0.0442	0.1381	0.1360	
PointGrid [12]	0.0550	0.0690	0.0842	0.1523	
DeepPCO (Ours)	0.0263	0.0305	0.0247	0.0659	

DeepPCO: End-to-End Point Cloud through Deep Parallel Neural Network

DeepPCO: End-to-End Point Cloud through Deep Parallel Neural Network

-0-

Q & A

